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But first...



Midterm Exam Logistics

Our first midterm exam is next Tuesday, February 4™, from
7:00 - 9:00 PM. Locations vary (mostly CEMEX).

You're responsible for Lectures 00 - 05 and topics covered
in PS1 - PS2. Later lectures (functions forward) and
problem sets (PS3 onward) won’t be tested here. Exam
problems may build on the written or coding components
from the problem sets.

The exam is closed-book, closed-computer, and limited-note.
You can bring a double-sided, 8.5” X 11” sheet of notes with
you to the exam, decorated however you’d like.

Students with alternate exam arrangements: these will be
confirmed via our seating assignment website.



Midterm Exam

We want you to do well on this exam!

« We're not trying to “weed out” weak students.
« We're not trying to enforce a curve where there isn't one.

« We want you to show what you've learned up to this point
so that you get a sense for where you stand and where
you can improve.

The purpose of this midterm is to give you a chance to show
what you've learned in the past few weeks.

It is not designed to assess your “mathematical potential” or
“innate mathematical ability.”



Preparing for the Exam



CS106A CS103

Dance Philosophy
Class Class

Learn by doing. Learn by reading.




Extra Practice Problems

 Up on the course website, you’ll find Extra Practice Problems 1, a
collection of seven practice midterms and an assortment of other
questions.

e Our Recommendation:

Work through one or two practice exams under realistic conditions (block off
two hours, have your notes sheet, use pencil and paper).

Review the solutions only when you’re done. Don’t peek! You can’t do that
on the actual exam.

Ping the course staff to ask questions, whether that’s “please review this
proof I wrote for one of the exam questions” or “why doesn’t the solution do
X, which seems easier than Y, which is what it did?”

Internalize the feedback. What areas do you need more practice with?
Study up on those topics. What transferrable skills did you learn in the
course of solving the problems? If you aren’t sure, ask!

Repeat!

« Realistically, we don’t expect you to do seven practice exams. We've
provided those just so you can get a sense of what’s out there.



You can always run
your code and just
see whal happens:

CS106A

Learning to
Speak

Rapid iteration.
Constant, small feedback.

Checking a proot
requires human

expertise,

CS103

\ 4

Building a
Rocket

Slower iteration.
Infrequent, large feedback.




Doing Practice Problems

As you work through practice problems, keep other
humans in the loop!

Ask your problem set partner to review your answers and
offer feedback - and volunteer to do the same!

Post your answers as private questions on Ed and ask for TA
feedback!

Feedback loops are key to improving!



Preparing for the Exam

We’ve posted an Exam Logistics page on the course
website with full details and logistics.

It also includes advice from former CS103 students about
how to do well here.

Check it out - there are tons of goodies there!



Exam Day Logistics

We’ll have proctors in the room.

We have assigned seating; see course website. These will be
posted sometime tomorrow (Thursday).

Check out your seat in advance, and screenshot it!

No phones, calculators, or other digital devices during the
exam.

Must have Stanford student ID to turn in exam.



Back to course content!



Today’s Main Topic: Graphs!

* A fun new toy to play with!

« “Magnum opus” of data structures with respect to
representational versatility.

« A vehicle for exploring proof techniques.



Outline for Today

 Graphs and Digraphs

e Two fundamental mathematical structures.
 Independent Sets and Vertex Covers

 Two structures in graphs.
* Proofs on Graphs

* Reprising themes from last week.



Graphs: An Overview



A graph is a mathematical structure
for representing relationships.




A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)



A graph is a mathematical structure
for representing relationships.
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A graph is a mathematical structure
for representing relationships.
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vertices) connected by edges (or arcs)




A graph is a mathematical structure
for representing relationships.
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A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)




A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)
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Chemical Bonds

http://4.bp.blogspot.com/-xCtB]81IKHgA/TjmOBONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/
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What's in Common

e Each of these structures consists of

* a collection of objects and
 links between those objects.

* Goal: Develop a general framework for
describing structures like these that
generalizes the idea across a wide
domain.



Graphs vs. Digraphs



A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)




Some graphs are directed.




Some graphs are undirected.

CAT




Graphs and Digraphs

 An undirected graph is one where edges link
nodes, with no endpoint preferred over the other.

A directed graph (or digraph) is one where
edges have an associated direction.

* (There’s something called a mixed graph that allows
for both types of edges, but they’'re fairly uncommon
and we won't talk about them.)

* Unless specified otherwise:
w “Graph” means “undirected graph” =



Formalizing Graphs

 How might we define a graph
mathematically?

 We need to specity

 what the nodes in the graph are, and
 which edges are in the graph.

 The nodes can be pretty much anything.

» This is pretty broad, but that’s a good thing!
« What about edges?



Formalizing Graphs

 An unordered pair is a set {a, b} of two elements
a # b. (Remember that sets are unordered.)

 For example, {0, 1} = {1, 0}

 An undirected graph is an ordered pair G = (V, E),
where

* Vis a set of nodes, which can be anything, and

« E is a set of edges, which are unordered pairs of nodes
drawn from V.

 Adirected graph (or digraph) is an ordered pair
G = (V, E), where
* Vis a set of nodes, which can be anything, and

« E is a set of edges, which are ordered pairs of nodes
drawn from V.



« An unordered pair is a set {a, b} of two elements a # b.
 An undirected graph is an ordered pair G = (V, E), where

* Vis a set of nodes, which can be anything, and
« E is a set of edges, which are unordered pairs of nodes drawn from V.

1 2

Which of these are drawings of undirected graphs?

Answer at



https://cs103.stanford.edu/pollev

Selt-Loops

 An edge from a node to itself is called a self-loop.

* In (undirected) graphs, self-loops are generally
not allowed.

« Can you see how this follows from the definition?

 In digraphs, self-loops are generally allowed
unless specified otherwise.




« An unordered pair is a set {a, b} of two elements a # b.

 An undirected graph is an ordered pair G = (V, E), where

* Vis a set of nodes, which can be anything, and
« E is a set of edges, which are unordered pairs of nodes drawn from V.

1 2

Which of these are drawings of undirected graphs?




Time-Out for Announcements!

A

More



PS2 Solutions Released

« Solutions to Problem Set 2 posted on course website.

* Generally no solutions to autograded problems.

* Questions? Ping us privately on Ed or visit office hours!

« PS3 is due this Friday at 1:00PM.

« Ask questions if you have them! That’s what we’re here
for. You can ask on Ed or in office hours.

* Please tag problems. :)



In-Person Practice Midterm

« Saturday, 3-5 PM

 See Elena’s post on Ed for details



Problem Set Two Graded

75% Percentile: 70 / 73 (96%)
50t Percentile: 68 / 73 (93%)
25% Percentile: 65 / 73 (89%)

0-41 42-45 46-49 50-53 54-57

58-61

62-65

66-69

70-73



Back to CS103!



Independent Sets and Vertex Covers



Two Motivating Problems



Lood

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.
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Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.
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Place park rangers in these forest trails so that
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Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.




Lood

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.




Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.




Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.



Choose at least one endpoint of each edge.



Choose at least one endpoint of each edge.



Choose at least one endpoint of each edge.



Choose at least one endpoint of each edge.



Vertex Covers

 Let G = (V, E) be an undirected graph. A vertex
cover of G is a set C C V such that the following
statement 1is true:

VueV.VwweV.{u,vieE->(uecCvveoO))
(“Every edge has at least one endpoint in C.”)

 Intuitively speaking, a vertex cover is a set formed
by picking at least one endpoint of each edge in the
graph.

» Vertex covers have applications to placing
streetlights/benches/security guards, as well as in
gene sequencing, machine learning, and
combinatorics.



A Separate Motivating Problem



Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.




Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.




Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.




Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.




Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.




Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.




Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.




Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.




Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.




Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.



Choose a set of nodes, no two of which are adjacent.



Independent Sets

 If G = (V, E) is an (undirected) graph,
then an independent set in G is a set
I € V such that

Vxel.Vyel {x, v} € E.
(“No two nodes in I are adjacent.”)

* Independent sets have applications to
resource optimization, conflict
minimization, error-correcting codes,
cryptography, and more.



A Connection
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Independent sets and vertex covers are related.



+

The star (%) nodes
are an independent set.

The plus (+) nodes are
are a vertex cover.

Independent sets and vertex covers are related.



*

The star (%) nodes
are an independent set.

The plus (+) nodes are
are a vertex cover.

Independent sets and vertex covers are related.



The star (%) nodes
are an independent set.

The plus (+) nodes are
are a vertex cover.

Theorem: Let G = (V, E) be a graph and
let C C V be a set. Then C is a vertex cover of G if
and only if V - C is an independent set in G.



Lemma 1: Let G = (V, E) be a graph and let C C V be
a set. If C is a vertex cover of G, then
V - C is an independent set in G.

What We’re Assuming What We Need To Show
G is a graph. V - C is an independent set in G.
C is a vertex cover of G. xev-cC.
Vye V-_C.
YVueV.VveV. ({u, v} €E -
ueEC vV veC ix, yr ¢ E.

)

Based on the assume/prove columns
here, which of u, v, x, and y
should we introduce?

Answer at
https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Lemma 1: Let G = (V, E) be a graph and let C C V be
a set. If C is a vertex cover of G, then
V - C is an independent set in G.

What We’re Assuming What We Need To Show
G is a graph. V - C is an independent set in G.
C is a vertex cover of G. VxeVv-cC.

Vye V-_C.
YVueV.VveV. ({u, v} €E -
ueC v vecC ix,y} € E.

)

We're assuming a We need To prove a
universally—quantified universally—quantified
sTfatement., Thal means we statement, We’ll ask the
don‘t do anything right reader to pick arbifrary
now and instead wait for choices ot x and y for us

an edge 1o present itselt, To work with,




Lemma 1: Let G = (V, E) be a graph and let C C V be
a set. If C is a vertex cover of G, then
V - C is an independent set in G.

What We’re Assuming What We Need To Show
G is a graph. V - C is an independent set in G.
C is a vertex cover of G. xev-cC.
Vye V-_C.
YVueV.VveV. ({u, v} €E -
ueEC vV veC ix, yr ¢ E.

)

We need fo prove a
universally—quantified
sfatement, We’ll ask the
reader To pick arbitrary
choices of x and y for us
To work with,




Lemma 1: Let G = (V, E) be a graph and let C C V be
a set. If C is a vertex cover of G, then
V - C is an independent set in G.

What We’re Assuming

G is a graph.

C is a vertex cover of G.

YVueV.VveV. ({u, v} €E -
ueC v vecC

)
x€eV-C.

yeV-C.

What We Need To Show

V - C is an independent set in G.

{x, y} € E.



Lemma 1: Let G = (V, E) be a graph and let C C V be
a set. If C is a vertex cover of G, then
V - C is an independent set in G.

What We’re Assuming

G is a graph.

C is a vertex cover of G.

YVueV.VveV. ({u, v} €E -
ueC v vecC

)
x € Vand x ¢ C.

yveEVandy ¢ C.

What We Need To Show

V - C is an independent set in G.

{x, y} € E.



Lemma 1: Let G = (V, E) be a graph and let C C V be
a set. If C is a vertex cover of G, then
V - C is an independent set in G.

What We’re Assuming

G is a graph.

C is a vertex cover of G.

YVueV.VveV. ({u, v} €E -
ueC v vecC

)
x € Vand x ¢ C.

yveEVandy ¢ C.

What We Need To Show

V - C is an independent set in G.

It this edge exists,
at least one of x
and y is in C,




Lemma 1: Let G = (V, E) be a graph and let C C V be
a set. If C is a vertex cover of G, then
V - C is an independent set in G.

What We’re Assuming What We Need To Show

G is a graph. V - C is an independent set in G.

C is a vertex cover of G.

YVueV.VveV. ({u, v} €E -

ueC v vecC X yr ¢ E.

)
x & C. @ .................. @
y ¢ C.

It this edge exists,
at least one of x
and y is in C,




Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of GG, then V- C is an
independent set of G.



Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of GG, then V- C is an
independent set of G.

Proof:



Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of GG, then V- C is an
independent set of G.

Proof: Assume C is a vertex cover of G.

There’s no need to
intfroduce G or C
here, Thal’s done in

the statement ot the
lemma itself,




Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of GG, then V- C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V - C is an independent set of G.



Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of GG, then V- C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V - C is an independent set of G. To do so, pick any
nodes x, y € V- C; we will show that {x, y} ¢ E.



Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of GG, then V- C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V - C is an independent set of G. To do so, pick any
nodes x, y € V- C; we will show that {x, y} ¢ E.

Suppose for the sake of contradiction that {x, y} € E.



Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of GG, then V- C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V - C is an independent set of G. To do so, pick any
nodes x, y € V- C; we will show that {x, y} ¢ E.

Suppose for the sake of contradiction that {x, y} € E.
Because x, y€ V-C, we know that x ¢ Cand y ¢ C.



Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of G, then V- C is an

independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V - C is an independent set of G. To do so, pick any
nodes x, y € V- C; we will show that {x, y} ¢ E.

Suppose for the sake of contradiction that {x, y} € E.
Because x, y€ V-C, we know that x ¢ Cand y ¢ C.
However, since C is a vertex cover of G and {x, y} € E,
we also see that x € C or y € C, contradicting our

previous statement.



Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of GG, then V- C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V - C is an independent set of G. To do so, pick any
nodes x, y € V- C; we will show that {x, y} ¢ E.

Suppose for the sake of contradiction that {x, y} € E.
Because x, y€ V-C, we know that x ¢ Cand y ¢ C.
However, since C is a vertex cover of G and {x, y} € E,
we also see that x € C or y € C, contradicting our

previous statement.

We’ve reached a contradiction, so our assumption was
wrong.



Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of GG, then V- C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V - C is an independent set of G. To do so, pick any
nodes x, y € V- C; we will show that {x, y} ¢ E.

Suppose for the sake of contradiction that {x, y} € E.
Because x, y€ V-C, we know that x ¢ Cand y ¢ C.
However, since C is a vertex cover of G and {x, y} € E,
we also see that x € C or y € C, contradicting our

previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} € E, as required.



Lemma 1: Let G = (V, E) be a graph and let C C V be a
set. If C is a vertex cover of GG, then V- C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V - C is an independent set of G. To do so, pick any
nodes x, y € V- C; we will show that {x, y} ¢ E.

Suppose for the sake of contradiction that {x, y} € E.
Because x, y€ V-C, we know that x ¢ Cand y ¢ C.
However, since C is a vertex cover of G and {x, y} € E,
we also see that x € C or y € C, contradicting our

previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} € E, as required. H



Lemma 2: Let G = (V, E) be a graph and let C C V be
a set. If C is not a vertex cover of G, then
V - C is not an independent set in G.

See appendix for this proof!

Be sure to check this one out and
follow through with the negations
of the statements above.




Finding an IS or VC

 The previous theorem means that finding a large
IS in a graph is equivalent to finding a small VC.

 If you’ve found one, you've found the other!

* Open Problem: Design an algorithm that, given
an n-node graph, finds either the largest IS or
smallest VC “efficiently,” where “efficiently”
means “in time O(n*) for some k € N.”

 There’s a $1,000,000 bounty on this problem - we’ll
see why in Week 10.



Recap for Today

A graph is a structure for representing items
that may be linked together. Digraphs
represent that same idea, but with a
directionality on the links.

 Graphs can’t have self-loops; digraphs can.

* Vertex covers and independent sets are
usetful tools for modeling problems with
graphs.

 The complement of a vertex cover is an
independent set, and vice-versa.



Next Time

 Paths and Trails

 Walking from one point to another.
 Local Area Networks

* The building blocks of the internet.
* Trees

A fundamental class of graphs.



Appendix



Lemma 2: Let G = (V, E) be a graph and let C C V be
a set. If C is not a vertex cover of G, then
V - C is not an independent set in G.



Taking Negations

 What is the negation of this statement,
which says “C is a vertex cover?”

YVueV.VveV. ({u, v} €eE -
ueC v vecC

)
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Taking Negations
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Taking Negations

 What is the negation of this statement,
which says “C is a vertex cover?”
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Taking Negations

 What is the negation of this statement,
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Taking Negations

 What is the negation of this statement,
which says “C is a vertex cover?”

JueV.adveV. ({u v} € E A
ugegC AN vegcl
)

» This says “there is an edge where both
endpoints aren’t in C.”



Taking Negations

 What is the negation of this statement,
which says “V - C is an independent set?”

YVueV-C.VWwveV-C.{u,v} ¢ E



Taking Negations

 What is the negation of this statement,
which says “V - C is an independent set?”

YueV-C.VveV-C.{u,v} & E



Taking Negations

 What is the negation of this statement,
which says “V - C is an independent set?”

dJueV-C.-VveV-C.{u, v} ¢ E



Taking Negations

 What is the negation of this statement,
which says “V - C is an independent set?”

JueV-C.iveV-C. ~({u, v} ¢ E)



Taking Negations

 What is the negation of this statement,
which says “V - C is an independent set?”

JueV-C.dveV-C.{u, v} €E



Taking Negations

 What is the negation of this statement,
which says “V - C is an independent set?”

JueV-C.dveV-C.{u, v} €E

» This says “there are two adjacent nodes in
V-C.



Lemma 2: Let G = (V, E) be a graph and let C C V be
a set. If C is not a vertex cover of G, then
V - C is not an independent set in G.

What We’re Assuming What We Need To Show
G is a graph. V - C is not an ind. set in G.
C is a not a vertex cover of G. xeV-C.
dyeV-_C.

JueV.dve V. ({u, v} €E A
ugC A veC {x, y} €E.
)




Lemma 2: Let G = (V, E) be a graph and let C C V be
a set. If C is not a vertex cover of G, then
V - C is not an independent set in G.

What We’re Assuming

G is a graph.

C is a not a vertex cover of G.

JueV.dve V. ({u, v} €E A
uéeC N vécCl
)

We're assuming an exisTentially—

guantified statement, so we’ll

immediately infroduce variables
u and Vv,

What We Need To Show

V - C is not an ind. set in G.
d1x € V- C.
dyeV-_C.
{x, y} € E.

We're proving an existentially—
guantified statement, so we
don’t infroduce variables x and

V. We're on a scavenger hunt!




Lemma 2: Let G = (V, E) be a graph and let C C V be
a set. If C is not a vertex cover of G, then
V - C is not an independent set in G.

What We’re Assuming What We Need To Show
G is a graph. V - C is not an ind. set in G.
C is a not a vertex cover of G. xeV-C.

dyeV-_C.

uev-cC. {x, y} €E.

veV-C_C.

{u, v} € E.

We're assuming an exisTentially—

guantified statement, so we’ll

immediately infroduce variables
u and Vv,




Lemma 2: Let G = (V, E) be a graph and let C C V be
a set. If C is not a vertex cover of G, then
V - C is not an independent set in G.

What We’re Assuming What We Need To Show
G is a graph. V - C is not an ind. set in G.
C is a not a vertex cover of G. xeV-C.

dyeV-_C.
uev-cC. {x, y} €E.

veVvV-C.

Any ideas aboud

{u, v} € E. whal we should

pick X and y o
be?




Lemma 2: Let G = (V, E) be a graph and let C C V be a
set. If C is not a vertex cover of G, then V - C is not an
independent set of G.



Lemma 2: Let G = (V, E) be a graph and let C C V be a
set. If C is not a vertex cover of G, then V - C is not an
independent set of G.

Proof:



Lemma 2: Let G = (V, E) be a graph and let C C V be a
set. If C is not a vertex cover of G, then V - C is not an
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